官方微博 RSS订阅 今天:2017年11月25日 星期六  
首页 走进高新区 政务公开 网上办事 政企互动 投资招商 人才工作 鼓励政策 站群导航
 
首页走进高新区行业知识大数据前沿

大数据时代数据分析与信息安全防护

2593论文网2017-09-22

随着我国网络信息技术不断的发展,当下时代已经成为大数据时代。以往大数据的概念主要存在于物理学领域、生物学领域、生态环境学领域、军事领域、金融领域、通讯领域等,而当下网络和信息业的空前发展使大数据引起了人们的关注。数据信息已经渗透到社会的各行各业,人们通过相关数据信息的发现和利用,可达到增加生产率和市场消费率的效果。但大数据技术收集信息软件给网络用户的隐私带来了问题,网络私人信息的安全防护遭到威胁。因此本文对大数据时代的数据分析与信息安全防护做出相关研究,研究内容如下。

1 大数据概述

大数据主要是指使用常规软件工具无法在规定的时间内对网络往来信息进行捕捉和管理以及处理。大数据时代的主要特点为5V,即数据总量大(Volume)、类型繁多(Variety)、价值密度低(Value)、速度快、时效高(Velocity)。大数据的初始计量单位为P(P=1000T)、E(E=100000T)、Z(Z=10000000T),数据量庞大,其种类包括网络文字信息、音频信息、视频信息、图片信息以及地理位置等,数据种类丰富对数据的处理能力也提出了较高的要求。在大数据中,虽然信息量大,但可利用的信息是有限的,因此,大数据价值密度较低。大数据相对于传统数据而言,需要人们更强的处理信息的能力和速度,对人们的数据驾驭力量提出了挑战。大数据在影响着人们生活方式的同时,还影响着各个行业的发展,大数据的出现也使信息安全面临着一些问题。

2 大数据时代数据分析概述

2.1 抽样量化

在大数据时代,样本就是总体本身,因此在分析某事物的过程中,不需依靠少量的数据样本,而是得到全部的数据。传统的抽样有样本缺乏稳定和随机抽样困难的情况,且在事先设定好了调查目的往往会使调查内容和范围受到人为限制,调查过程中的侧重点也导致抽样数据无法反映总体情况。另外样本量的有限也使抽样结果缺乏精确性,致使错误率的增加,同时传统抽样时间效率和生产率低。

2.2 数据模糊计算

在大数据的影响下,人们接受数据较为繁杂,数据精确性减弱。有数据规模庞大,因此对数据追求精确性的可能性较小,测量数据和调查数据都会因为一些不可控的因素或认为因素致使数据精确性欠缺。大数据时代获得的数据量多,但不精确的数据也在其中,因此对待大数据应该看到其有利方面。数据的不精确也有利于对事物总体的了解,样本的增加使信息更为真实。大数据的不精确是不经意产生的,因此,在需要精确数据的领域还是需要避免不精确性的发生。

2.3 利用数据关系

关注事物的相关性,而不是只追求因果。传统抽样中会预先假定因果,但在大数据时代,数据的复杂和庞大,会导致因果关系复杂化和分析因果复杂化。因此,大数据不不利于追求因果关系,而利于事物相关关系的追求。大数据对数据的分析思路为分析数据相关性,事物关系之间的形式多样化,关系和目的也是根据数据的变化而变化,没有相对较为固定的因果和亲疏关系。

大数据所提供的价值可以让人们预判自己所想知道的事情,比如华尔街利用网络民众的情绪变化进行抛售股票;基金公司根据对购物网站顾客的评论来分析产品销售情况;银行根据网络求职的岗位情况判断就业;投资机构从大数据中查找企业破产的前兆;美国总统团队根据社交软件分析选民喜好。以此可以看出在大数据时代,可利用的数据信息对利用者而言十分重要。

3 大数据时代面临的信息安全问题

3.1 信息安全风险

由于大数据的特点之一为存储信息较为广泛,对信息安全性有一定的影响。大数据信息海量存储技术的成熟降低了信息存储的成本,因此大数据信息处理量显著增加,处理中心分析信息也变得更加容易。大数据信息中心可以根据终端网络用户的行为信息进行分析,然后将结果提供给信息利用者,分析搜索的商品后向你推荐所感兴趣的商品。在移动互联网,终端用户信息被随时采集和存储,造成了信息安全风险。

3.2 个人隐私泄露

有一些网络企业会对网络终端用户的隐私进行搜集。为了赢得市场竞争优势,用户信息成为了企业的发展根据。比如一些智能手机软件会在用户不知情的情况下,对用户使用软件的时间、地点和位置进行信息记录,发送到软件服务器,暴露用户的个人隐私泄露信息。

3.3 安全防护难度

大数据时代由于非结构化的数据类型多、价值密度低,信息量庞大,因此对安全防护技术要求较高,目前我国防护技术还未能够处理大量和多类型的数据,因此数据防护难度系数较高。

4 数据时代面临的信息安全问题的应对措施

4.1 安全技术研发

目前大数据需要能够处理大量和多类型的数据分析技术,以主动发现大数据中潜藏的威胁,比如利用信息丰富开发认证系统技术或建设数据真实分析系统,将恶意信息和无用信息排除在外。

4.2 制定个人隐私泄露保护法律法规

由于大数据是新生事物,因此相关的法律法规存在空白。网络上违法的数据信息行为需要有强制和高效的规则对其进行规范,以保护个人信息的合理利用性。

4.3 提高民众信息安全认知

大数据来源于民众,因此提高民众的信息安全意识,可有效防范数据信息面临的信息安全问题,从而起到维护个人隐私泄露、避免负面影响的作用。

5 结语

综上所述,大数据时代数据分析与信息安全防护具有重要意义,当下网络和信息业的空前发展使大数据引起了人们的关注,数据信息已经渗透到社会的各行各业,数据分析使人们受益匪浅。但大数据技术收集信息软件给网络用户的信息安全带来了问题。比如信息安全风险、个人隐私泄露、安全防护有难度等,本研究作者经过多方面思考提出提高安全技术研发程度、制定个人隐私保护法律法规以及提高民众信息安全认知的解决意见,以促进大数据时代信息安全性的增加。

【打印此页】 【返回顶部】

关键字:大数据
分享到:
 
 
内容纠错|隐私声明|联系我们|网站地图|网站建议 网站版权所有:贵阳国家高新技术产业开发区管委会 人才专线:0851-84700576 联系邮箱:gygjgxq@163.com
您是第 2134034 位来访者   技术支持:西石网络 招商专线:0851-84702120 贵公网安备 52011502000193号 黔ICP备11002881号-5